Academic Year: 2015 – 2016

Semester: Spring Date: May 5, 2016

Mathematics: OCM 103

Final Exam

Duration Time: 2 Hours

Answer All Questions

No. of questions: 4 Total Mark: 60

Question 1

(a)If
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 0 & 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}$

10

Find, if possible, A + B, A.A, A.B, $A.B^{t}$, |A|, $|A^{t}.B|$.

(b) Find the eigenvalues and eigenvectors of : $A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$.

6

Ouestion 2

(a) Find **y**` where:

12

(i)
$$y = x^3 + 3^x + 3x$$
 (ii) $y = x^2 \cdot 2^x + 4$

(ii)
$$y = x^2 \cdot 2^x + 4$$

(iii) $y = \cos x \cdot \log x$

(iv)
$$y = [x^3 - \sin x]^6$$
 (v) $y = 3 + \sin^5 x$

$$(v) y = 3 + \sin^5 x$$

(vi)
$$y = \frac{2}{x^2} + \frac{\ln x}{2x+1}$$

(b) Find the integrals:

12

(i)
$$\int (x^4 + 2^x) dx$$

(ii)
$$\int \left(\frac{2}{3} + \frac{1}{x^3}\right) dx$$

(iii) $\int (2 \cos x - \sin x) dx$

(iv)
$$\int (\sqrt{x} + e^x) dx$$
 (v) $\int x \cos x dx$

Time:

Quantity: y

$$(v) \int x \cos x \, dx$$

$$(vi)\int_0^1 (x^2 + 2)^2 dx$$

Question 3

(a) Find the extrema of the function : $f(x) = x^3 - 6x^2 + 2$

5

(b) If a drug exists in three dosage forms: The first of concentration 1 mg/tablet, The second of concentration 2 mg/tablet, The third of concentration 4 mg/tablet. If the pharmacist wanted to produce 8 tablets of concentration 2.5 mg/tablet by mixing whole tablets. Find two possible solutions.

5

5

5

Question 4

(a) If y is the quantity of drug decreases according to the equation $\frac{dy}{dt} = -y^{\frac{1}{2}}$.

Find y as function of the time t where the initial quantity is 16 units. Also, find (i) The value of y after 2 hours.

(ii) The time at which there is no drug in the blood.

4

16

6

11

(b) If the quantity of a drug in the blood decreases according to the data:

2

19

10 Hours 1 Units

From these data, find the relation y = a + bt.

0

20

Good Luck

Dr. Mohamed Eid

8

5